Stochastic Differential Mixed-Effects Models
نویسندگان
چکیده
منابع مشابه
Stochastic Differential Mixed-Effects Models
Stochastic differential equations have been shown useful in describing random continuous time processes. Biomedical experiments often imply repeated measurements on a series of experimental units and differences between units can be represented by incorporating random effects into the model. When both system noise and random effects are considered, stochastic differential mixed-effects models e...
متن کاملParameter Estimation in Stochastic Differential Mixed-Effects Models
Stochastic differential equation (SDE) models have shown useful to describe continuous time processes, e.g. a physiological process evolving in an individual. Biomedical experiments often imply repeated measurements on a series of individuals or experimental units and individual differences can be represented by incorporating random effects into the model. When both system noise and individual ...
متن کاملEstimating mixed-effects differential equation models
Ordinary differential equations (ODEs) are popular tools for modeling complicated dynamic systems in many areas. When multiple replicates of measurements are available for the dynamic process, it is of great interest to estimate mixed-effects in the ODE model for the process. We propose a semiparametric method to estimate mixed-effects ODE models. Rather than using the ODE numeric solution dire...
متن کاملParametric inference for mixed models defined by stochastic differential equations
Non-linear mixed models defined by stochastic differential equations (SDEs) are considered: the parameters of the diffusion process are random variables and vary among the individuals. A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is proposed. This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved using latent auxilia...
متن کاملMaximum likelihood estimation for stochastic differential equations with random effects Running headline: Mixed stochastic differential equations
We consider N independent stochastic processes (Xi(t), t ∈ [0, Ti]), i = 1, . . . , N , defined by a stochastic differential equation with drift term depending on a random variable φi. The distribution of the random effect φi depends on unknown parameters which are to be estimated from the continuous observation of the processes Xi. We give the expression of the exact likelihood. When the drift...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scandinavian Journal of Statistics
سال: 2010
ISSN: 0303-6898,1467-9469
DOI: 10.1111/j.1467-9469.2009.00665.x